Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Annette Rompel, Andrew D. Bond* and Christine J. McKenzie

University of Southern Denmark, Department of Chemistry, Campusvej 55, 5230 Odense M, Denmark

Correspondence e-mail: adb@chem.sdu.dk

Key indicators

Single-crystal X-ray study $T=180~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.004~\mathrm{\mathring{A}}$ R factor = 0.056 wR factor = 0.154 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-Methyl-N-(2-pyridiniomethyl)-2-[N-(2-pyridiniomethyl)methylamino]-N-(2-pyridylmethyl)ethanaminium tris(perchlorate)

The crystal structure of the title compound, $C_{22}H_{30}N_5^{3+}\cdot 3ClO_4^-$, at 180 K contains intramolecular $N-H\cdots N$ and intermolecular $N-H\cdots O$ hydrogen bonds.

Received 4 October 2004 Accepted 5 October 2004 Online 9 October 2004

Comment

We have used the tetradentate N_4 capping ligand 'mebispicen' [N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine] on numerous occasions to prepare mononuclear and dinuclear transition metal complexes [for examples, see Hazell *et al.* (1995), Glerup *et al.* (1994) and Egdal *et al.* (2003)]. From a reaction mixture incorporating mebispicen and manganese(II), single crystals of the title compound, (I), were isolated. The formation of a quaternary ammonium centre by addition of a third 2-pyridylmethyl group side-arm is not unprecedented; we have previously observed similar reactivity for the pentadentate N_5 ligand N'-methyl-N,N,N'-tris(2-pyridyl-methyl)ethane-1,2-diamine in the presence of iron(III) (Jensen *et al.*, 1997).

$$\begin{array}{c|c} CH_3 & & & \\ \hline NH & CH_3 & & \\ \hline & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

mebiscipen

In the solid state at 180 K, the organic cation of the title compound (Fig. 1) exhibits an intramolecular $N-H\cdots N$ hydrogen bond between the N atoms of the 2-pyridylmethyl pendant arms bound to the quaternary N atom (Table 1). The pyridyl ring of the 2-pyridylmethyl group bound to the tertiary N atom is also protonated and forms intermolecular $N-H\cdots O$ hydrogen bonds (bifurcated at the donor) to two perchlorate anions (Table 1). The third perchlorate anion in the asymmetric unit is not involved in hydrogen bonding.

Experimental

The tetradentate N₄ ligand 'mebispicen' [N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine] was prepared according to the

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

method of Toftlund *et al.* (1984). Crystals were obtained from a solution of mebispicen and manganese(II) perchlorate hexahydrate in equimolar quantities in water. The possibility of contamination of the mebispicen starting material was excluded by ¹H NMR.

Crystal data

$C_{22}H_{30}N_5^{3+} \cdot 3ClO_4^{-}$	$D_x = 1.586 \text{ Mg m}^{-3}$		
$M_r = 662.86$	Mo $K\alpha$ radiation		
Monoclinic, $P2_1/n$	Cell parameters from 8693		
a = 13.6004 (3) Å	reflections		
b = 8.7668 (2) Å	$\theta = 2.8 - 26.4^{\circ}$		
c = 23.5440 (5) Å	$\mu = 0.40 \text{ mm}^{-1}$		
$\beta = 98.493 \ (1)^{\circ}$	T = 180 (2) K		
$V = 2776.41 (11) \text{ Å}^3$	Block, colourless		
Z = 4	$0.25 \times 0.20 \times 0.20 \text{ mm}$		

Data collection

Bruker-Nonius X8APEX-II CCD	5653 independent reflections
diffractometer	4549 reflections with $I > 2\sigma(I)$
Thin-slice ω and φ scans	$R_{\rm int} = 0.033$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
(SADABS; Sheldrick, 2003)	$h = -16 \rightarrow 16$
$T_{\min} = 0.841, T_{\max} = 0.924$	$k = -10 \rightarrow 10$
55950 measured reflections	$l = -29 \rightarrow 29$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0667P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.056$	+ 5.5837 <i>P</i>]
$wR(F^2) = 0.154$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
5653 reflections	$\Delta \rho_{\text{max}} = 1.25 \text{ e Å}^{-3}$
379 parameters	$\Delta \rho_{\min} = -1.10 \text{ e Å}^{-3}$
H-atom parameters constrained	

 Table 1

 Hydrogen-bonding geometry (\mathring{A} , °).

$D-\mathbf{H}\cdot\cdot\cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathbf{H}\cdot\cdot\cdot A$
$N1 - H1B \cdot \cdot \cdot O5^{i}$	0.88	2.53	3.051 (4)	118
$N1 - H1B \cdot \cdot \cdot O9^{i}$	0.88	2.16	2.951 (5)	149
$N4 - H4B \cdot \cdot \cdot N5$	0.88	1.88	2.718 (4)	159

Symmetry code: (i) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$.

H atoms bound to C atoms were positioned geometrically and allowed to ride during subsequent refinement, with C—H = 0.95 Å and $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$ for the pyridyl rings, C—H = 0.99 Å and $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$ for the methylene groups, and C—H = 0.98 Å and $U_{\rm iso}({\rm H})=1.5U_{\rm eq}({\rm C})$ for the methyl groups. H atoms bound to pyridyl N atoms were apparent in difference Fourier maps, but were positioned geometrically in the final model and allowed to ride, with N—H = 0.88 Å and $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm N})$. The highest peak and deepest hole are associated with one perchlorate anion (containing Cl3), indicative of some degree of orientational disorder which was not modelled.

Figure 1

The organic cation in the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms. H atoms are shown as spheres of arbitrary radius. The intramolecular $N-H\cdots N$ hydrogen bond is indicated by a dotted line.

Data collection: *APEX*2 (Bruker–Nonius, 2004); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are grateful to the Danish Natural Science Research Council (SNF) and Carlsbergfondet for provision of the X-ray equipment.

References

Bruker-Nonius (2004). APEX2. Version 1.0–22. Bruker-Nonius BV, Delft, The Netherlands.

Bruker (2003). SAINT. Version 7.06a. Bruker AXS Inc., Madison, Wisconsin, USA.

Egdal, R. K., Hazell, A., Larsen, F. B., McKenzie, C. J. & Scarrow, R. C. (2003).
J. Am. Chem. Soc. 125, 32–33.

Glerup, J., Goodson, P. A., Hazell, A., Hazell, R., Hodgson, D. J., McKenzie, C. J., Michelsen, K., Rychlewska, U. & Toftlund, H. (1994). *Inorg. Chem.* 33, 4105–4111.

Hazell, R., Jensen, K. B., McKenzie, C. J. & Toftlund, H. (1995). J. Chem. Soc. Dalton Trans. pp. 707–717.

Jensen, K. B., McKenzie, C. J., Simonsen, O., Toftlund, H. & Hazell, A. (1997). Inorg. Chim. Acta, 257, 163–172.

Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Toftlund, H., Pedersen, E. & Yde-Andersen, S. (1984). Acta Chem. Scand. Ser. A. 38, 693–697.