Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Annette Rompel, Andrew D. Bond* and Christine J. McKenzie

University of Southern Denmark, Department of Chemistry, Campusvej 55, 5230 Odense M,

Denmark

Correspondence e-mail: adb@chem.sdu.dk

Key indicators

Single-crystal X-ray study
$T=180 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.056$
$w R$ factor $=0.154$
Data-to-parameter ratio $=14.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

N-Methyl- N -(2-pyridiniomethyl)-2-[N-(2-pyridinio-methyl)methylamino]- N -(2-pyridylmethyl)ethanaminium tris(perchlorate)

The crystal structure of the title compound, $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{5}^{3+} \cdot 3 \mathrm{ClO}_{4}^{-}$, at 180 K contains intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Received 4 October 2004 Accepted 5 October 2004 Online 9 October 2004

Comment

We have used the tetradentate N_{4} capping ligand 'mebispicen' [N, N^{\prime}-dimethyl- N, N^{\prime}-bis(2-pyridylmethyl)ethane-1,2-diamine] on numerous occasions to prepare mononuclear and dinuclear transition metal complexes [for examples, see Hazell et al. (1995), Glerup et al. (1994) and Egdal et al. (2003)]. From a reaction mixture incorporating mebispicen and manganese(II), single crystals of the title compound, (I), were isolated. The formation of a quaternary ammonium centre by addition of a third 2-pyridylmethyl group side-arm is not unprecedented; we have previously observed similar reactivity for the pentadentate $\quad \mathrm{N}_{5}$ ligand $\quad N^{\prime}$-methyl- N, N, N^{\prime}-tris(2-pyridyl-methyl)ethane-1,2-diamine in the presence of iron(III) (Jensen et al., 1997).

mebiscipen

In the solid state at 180 K , the organic cation of the title compound (Fig. 1) exhibits an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond between the N atoms of the 2-pyridylmethyl pendant arms bound to the quaternary N atom (Table 1). The pyridyl ring of the 2-pyridylmethyl group bound to the tertiary N atom is also protonated and forms intermolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (bifurcated at the donor) to two perchlorate anions (Table 1). The third perchlorate anion in the asymmetric unit is not involved in hydrogen bonding.

Experimental

The tetradentate N_{4} ligand 'mebispicen' $\left[N, N^{\prime}\right.$-dimethyl- N, N '-bis(2-pyridylmethyl)ethane-1,2-diamine] was prepared according to the
method of Toftlund et al. (1984). Crystals were obtained from a solution of mebispicen and manganese(II) perchlorate hexahydrate in equimolar quantities in water. The possibility of contamination of the mebispicen starting material was excluded by ${ }^{1} \mathrm{H}$ NMR.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{5}{ }^{3+} \cdot 3 \mathrm{ClO}_{4}^{-}$
$M_{r}=662.86$
Monoclinic, $P 2_{1 / 2} n$
$a=13.6004$ (3) £
$b=8.7668$ (2) \AA
$c=23.5440(5) \AA$
$\beta=98.493$ (1) ${ }^{\circ}$
$V=2776.41(11) \AA^{3}$
$Z=4$
$D_{x}=1.586 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8693
\quad reflections
$\theta=2.8-26.4^{\circ}$
$\mu=0.40 \mathrm{~mm}^{-1}$
$T=180(2) \mathrm{K}$
Block, colourless
$0.25 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Bruker-Nonius X8APEX-II CCD diffractometer
Thin-slice ω and φ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.841, T_{\text {max }}=0.924$
55950 measured reflections
5653 independent reflections
4549 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-16 \rightarrow 16$
$k=-10 \rightarrow 10$
$l=-29 \rightarrow 29$

Table 1
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1B $\cdots \mathrm{O}^{\text {i }}$	0.88	2.53	$3.051(4)$	118
N1-H1B \cdots O $^{\mathrm{i}}$	0.88	2.16	$2.951(5)$	149
N4-H4B \cdots N	0.88	1.88	$2.718(4)$	159

Symmetry code: (i) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.
H atoms bound to C atoms were positioned geometrically and allowed to ride during subsequent refinement, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the pyridyl rings, $\mathrm{C}-\mathrm{H}=0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the methylene groups, and $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl groups. H atoms bound to pyridyl N atoms were apparent in difference Fourier maps, but were positioned geometrically in the final model and allowed to ride, with $\mathrm{N}-\mathrm{H}=0.88 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. The highest peak and deepest hole are associated with one perchlorate anion (containing Cl 3), indicative of some degree of orientational disorder which was not modelled.

Figure 1

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0667 P)^{2}\right. \\
\quad+5.5837 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=1.25 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-1.10 \mathrm{e}^{-3}
\end{aligned}
$$

The organic cation in the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms. H atoms are shown as spheres of arbitrary radius. The intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond is indicated by a dotted line.

Data collection: APEX2 (Bruker-Nonius, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful to the Danish Natural Science Research Council (SNF) and Carlsbergfondet for provision of the X-ray equipment.

References

Bruker-Nonius (2004). APEX2. Version 1.0-22. Bruker-Nonius BV, Delft, The Netherlands.
Bruker (2003). SAINT. Version 7.06a. Bruker AXS Inc., Madison, Wisconsin, USA.
Egdal, R. K., Hazell, A., Larsen, F. B., McKenzie, C. J. \& Scarrow, R. C. (2003). J. Am. Chem. Soc. 125, 32-33.

Glerup, J., Goodson, P. A., Hazell, A., Hazell, R., Hodgson, D. J., McKenzie, C. J., Michelsen, K., Rychlewska, U. \& Toftlund, H. (1994). Inorg. Chem. 33, 4105-4111.
Hazell, R., Jensen, K. B., McKenzie, C. J. \& Toftlund, H. (1995). J. Chem. Soc. Dalton Trans. pp. 707-717.
Jensen, K. B., McKenzie, C. J., Simonsen, O., Toftlund, H. \& Hazell, A. (1997). Inorg. Chim. Acta, 257, 163-172.
Sheldrick, G. M. (2003). $S A D A B S$. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Toftlund, H., Pedersen, E. \& Yde-Andersen, S. (1984). Acta Chem. Scand. Ser. $A, 38,693-697$.

